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The following is a detailed discussion of Behrend’s construction of a large set of integers which
lacks three-term arithmetic progressions. It is based on a proof sketch introduced to me at the
2010 University of Georgia REU in mathematics, which in turn was based on Behrend’s original
manuscript [1].

Theorem 1 (Behrend’s Theorem, 1946). Let N be a large integer. Then there exists a subset
A C [1, N] with %l > exp(—cy/log N) which does not contain any arithmetic progressions of length
three.

Proof. Behrend’s construction relies on the observation that a line can intersect any sphere in at
most two points.

Consider the points x = (x1,x2,...,2,) € [1, M]". We know that there are M™ such points, and
for each point we have that r? := 23 + ... + 22 is integer-valued in the interval [n,nM?]. Thus by
the pigeonhole principle, there must exist a sphere S, (M) with radius  which contains at least
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points.
We would now like to map S,,(M) to the integers. We define P : Z" — 7Z by

P(z) = ﬁ S @MY
=1

This mapping has a number of desirable properties which will be useful:

I. P is integer-valued;

II. 1 < P(x) < (2M)™ for each x € [1, M]™;
III. P is linear;
IV. P is one-to-one in the domain [1, M]"; and

V. P(z) —P(y) =P(y) — P(z) = z—y=y—uzforaluxyzell M]"

Property I is clear because each summand in P includes a factor of 2M.



Property II follows because each summand is strictly increasing with each of the coordinates x;.
Thus we have that for z € [1, M]",

P(z) < P((M, M, ..., M)) = ﬁ S M(2ny
=1
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The lower bound is trivial since each summand z;(2M)*~! is greater than or equal to 1.

Property 111 is straightforward from the definition of P, for if x,y € Z" and a,b € Z, we have

R ,
Plaz +by) = oo > (azi + by;) (2M)’
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—a (2]1\4 Z xi(QM)Z) +b (2}\4 Z yi(QM)i> = aP(z) + bP(y).

To see that Properties IV and V hold, we make use of the following lemma.

Lemma 1.1. Let x € (=2M,2M)". Then P(x) =0 if and only if x = 0.

Proof. If x = 0, then clearly P(x) = 0 by the definition of P. Now suppose by way of contradiction
that P(z) = 0 but « # 0. In this case, there is a least coordinate j such that ; # 0. Then we have
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and this implies that
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where £ is an integer. But we are assuming that 0 < |z;| < 2M, and this implies that 0 < k < 1,
which is ridiculous. Thus our original assumption must have been false, and we must conclude that
z =0. [

Now to see that Property IV holds, suppose that P(x) = P(y) for z,y € [1, M]". Then we have
P(z) — P(y) = P(x —y) = 0, and since z —y € (—M,M)" C (—2M,2M)", this implies by the
lemma that x —y = 0, or x = y. Thus P is one-to-one.
Finally, to see that Property V holds, suppose that P(z) — P(y) = P(y) — P(x) for z,yz € [1, M]™.
Then we have

P(z) =2P(y) + P(x) = P(z =2y + x) = 0,
and we notice that z — 2y +z € (—2M,2M)™. So again by the lemma, we find that z — 2y +x = 0,
or z —y =y — x, as we wished to show.
Now take n = [y/Iog N| and M = [N'/"/2|, and define A := P(S,(M)). Then A C [1,(2M)"] C
[1, N] because P is integer valued into the domain [1,(2M)"], and |A| = |S,(M)| because P is
one-to-one. Finally, we notice that A contains no arithmetic progressions of length 3, because by



Property V, any non-trivial 3-term arithmetic progression in A corresponds to such a progression
in S, which is impossible because a line can intersect with a Euclidean sphere in at most 2 points.

To see that A is large enough, we calculate (assuming N exceeds some trivial lower bounds):
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Thus A satisfies the bounds required by the theorem.
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