Behrend's Construction

Bryan Gillespie, Pennsylvania State University

June 31, 2010

The following is a detailed discussion of Behrend's construction of a large set of integers which lacks three-term arithmetic progressions. It is based on a proof sketch introduced to me at the 2010 University of Georgia REU in mathematics, which in turn was based on Behrend's original manuscript [1].

Theorem 1 (Behrend's Theorem, 1946). Let N be a large integer. Then there exists a subset $A \subseteq[1, N]$ with $\frac{|A|}{N} \geq \exp (-c \sqrt{\log N})$ which does not contain any arithmetic progressions of length three.

Proof. Behrend's construction relies on the observation that a line can intersect any sphere in at most two points.
Consider the points $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[1, M]^{n}$. We know that there are M^{n} such points, and for each point we have that $r^{2}:=x_{1}^{2}+\ldots+x_{n}^{2}$ is integer-valued in the interval $\left[n, n M^{2}\right]$. Thus by the pigeonhole principle, there must exist a sphere $S_{n}(M)$ with radius r which contains at least

$$
\left|S_{n}(M)\right| \geq\left\lceil\frac{M^{n}}{n M^{2}-n+1}\right\rceil \geq \frac{M^{n}}{n\left(M^{2}-1\right)}>\frac{M^{n-2}}{n}
$$

points.
We would now like to map $S_{n}(M)$ to the integers. We define $P: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ by

$$
P(x):=\frac{1}{2 M} \sum_{i=1}^{n} x_{i}(2 M)^{i} .
$$

This mapping has a number of desirable properties which will be useful:
I. P is integer-valued;
II. $1 \leq P(x) \leq(2 M)^{n}$ for each $x \in[1, M]^{n}$;
III. P is linear;
IV. P is one-to-one in the domain $[1, M]^{n}$; and

$$
\text { V. } P(z)-P(y)=P(y)-P(x) \Longrightarrow z-y=y-x \text { for all } x, y, z \in[1, M]^{n} \text {. }
$$

Property I is clear because each summand in P includes a factor of $2 M$.

Property II follows because each summand is strictly increasing with each of the coordinates x_{i}. Thus we have that for $x \in[1, M]^{n}$,

$$
\begin{aligned}
P(x) & \leq P((M, M, \ldots, M))=\frac{1}{2 M} \sum_{i=1}^{n} M(2 M)^{i} \\
& =M \sum_{i=1}^{n-1}(2 M)^{i}=M \frac{(2 M)^{n}-1}{2 M-1} \leq M \frac{(2 M)^{n}}{M}=(2 M)^{n} .
\end{aligned}
$$

The lower bound is trivial since each summand $x_{i}(2 M)^{i-1}$ is greater than or equal to 1 .
Property III is straightforward from the definition of P, for if $x, y \in \mathbb{Z}^{n}$ and $a, b \in \mathbb{Z}$, we have

$$
\begin{aligned}
P(a x+b y) & =\frac{1}{2 M} \sum_{i=1}^{n}\left(a x_{i}+b y_{i}\right)(2 M)^{i} \\
& =a\left(\frac{1}{2 M} \sum_{i=1}^{n} x_{i}(2 M)^{i}\right)+b\left(\frac{1}{2 M} \sum_{i=1}^{n} y_{i}(2 M)^{i}\right)=a P(x)+b P(y) .
\end{aligned}
$$

To see that Properties IV and V hold, we make use of the following lemma.
Lemma 1.1. Let $x \in(-2 M, 2 M)^{n}$. Then $P(x)=0$ if and only if $x=0$.
Proof. If $x=0$, then clearly $P(x)=0$ by the definition of P. Now suppose by way of contradiction that $P(x)=0$ but $x \neq 0$. In this case, there is a least coordinate j such that $x_{j} \neq 0$. Then we have

$$
P(x)=\frac{1}{2 M} \sum_{i=1}^{n} x_{i}(2 M)^{i}=\frac{1}{2 M} \sum_{i=j}^{n} x_{i}(2 M)^{i}=0,
$$

and this implies that

$$
x_{j}=\sum_{i=j+1}^{n} x_{i}(2 M)^{i-j}=2 M \sum_{i=0}^{n-(j+1)} x_{i+(j+1)}(2 M)^{i}=2 M \cdot k,
$$

where k is an integer. But we are assuming that $0<\left|x_{j}\right|<2 M$, and this implies that $0<k<1$, which is ridiculous. Thus our original assumption must have been false, and we must conclude that $x=0$.

Now to see that Property IV holds, suppose that $P(x)=P(y)$ for $x, y \in[1, M]^{n}$. Then we have $P(x)-P(y)=P(x-y)=0$, and since $x-y \in(-M, M)^{n} \subseteq(-2 M, 2 M)^{n}$, this implies by the lemma that $x-y=0$, or $x=y$. Thus P is one-to-one.
Finally, to see that Property V holds, suppose that $P(z)-P(y)=P(y)-P(x)$ for $x, y z \in[1, M]^{n}$. Then we have

$$
P(z)-2 P(y)+P(x)=P(z-2 y+x)=0,
$$

and we notice that $z-2 y+x \in(-2 M, 2 M)^{n}$. So again by the lemma, we find that $z-2 y+x=0$, or $z-y=y-x$, as we wished to show.
Now take $n=\lceil\sqrt{\log N}\rceil$ and $M=\left\lfloor N^{1 / n} / 2\right\rfloor$, and define $A:=P\left(S_{n}(M)\right)$. Then $A \subseteq\left[1,(2 M)^{n}\right] \subseteq$ $[1, N]$ because P is integer valued into the domain $\left[1,(2 M)^{n}\right]$, and $|A|=\left|S_{n}(M)\right|$ because P is one-to-one. Finally, we notice that A contains no arithmetic progressions of length 3 , because by

Property V, any non-trivial 3-term arithmetic progression in A corresponds to such a progression in S, which is impossible because a line can intersect with a Euclidean sphere in at most 2 points. To see that A is large enough, we calculate (assuming N exceeds some trivial lower bounds):

$$
\begin{aligned}
\frac{|A|}{N} & =\frac{|S|}{N} \geq \frac{M^{n-2}}{n N}=\frac{\left\lfloor N^{1 / n} / 2\right\rfloor^{n-2}}{n N} \geq \frac{\left(N^{1 / n} / e\right)^{n-2}}{n N}=e^{2-n} \cdot N^{-2 / n} \cdot \frac{1}{n} \\
& =e^{\left(2-\left\lceil\sqrt{\log N\rceil)} \cdot N^{(-2 /\lceil\sqrt{\log N\rceil)}} \cdot \frac{1}{\lceil\sqrt{\log N\rceil}}\right.\right.} \\
& \geq e^{(2-(\sqrt{\log N-1}))} \cdot N^{(-2 / \sqrt{\log N})} \cdot \frac{1}{\sqrt{\log N}+1} \\
& \geq e^{(1-\sqrt{\log N})} \cdot e^{(-2 \log N / \sqrt{\log N})} \cdot e^{-1-\sqrt{\log N}}=e^{-4 \sqrt{\log N}}
\end{aligned}
$$

Thus A satisfies the bounds required by the theorem.

References

[1] Behrend, Felix A. On the sets of integers which contain no three in arithmetic progression. Proceedings of the National Academy of Sciences, 23:331-332, 1946.

