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The following is a detailed discussion of Behrend’s construction of a large set of integers which
lacks three-term arithmetic progressions. It is based on a proof sketch introduced to me at the
2010 University of Georgia REU in mathematics, which in turn was based on Behrend’s original
manuscript [1].

Theorem 1 (Behrend’s Theorem, 1946). Let N be a large integer. Then there exists a subset

A ⊆ [1, N ] with |A|N ≥ exp(−c
√

logN) which does not contain any arithmetic progressions of length
three.

Proof. Behrend’s construction relies on the observation that a line can intersect any sphere in at
most two points.

Consider the points x = (x1, x2, . . . , xn) ∈ [1,M ]n. We know that there are Mn such points, and
for each point we have that r2 := x21 + . . . + x2n is integer-valued in the interval [n, nM2]. Thus by
the pigeonhole principle, there must exist a sphere Sn(M) with radius r which contains at least

|Sn(M)| ≥
⌈

Mn

nM2 − n + 1

⌉
≥ Mn

n(M2 − 1)
>

Mn−2

n

points.

We would now like to map Sn(M) to the integers. We define P : Zn → Z by

P (x) :=
1

2M

n∑
i=1

xi(2M)i.

This mapping has a number of desirable properties which will be useful:

I. P is integer-valued;

II. 1 ≤ P (x) ≤ (2M)n for each x ∈ [1,M ]n;

III. P is linear;

IV. P is one-to-one in the domain [1,M ]n; and

V. P (z)− P (y) = P (y)− P (x) =⇒ z − y = y − x for all x, y, z ∈ [1,M ]n.

Property I is clear because each summand in P includes a factor of 2M .
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Property II follows because each summand is strictly increasing with each of the coordinates xi.
Thus we have that for x ∈ [1,M ]n,

P (x) ≤ P ((M,M, . . . ,M)) =
1

2M

n∑
i=1

M(2M)i

= M

n−1∑
i=1

(2M)i = M
(2M)n − 1

2M − 1
≤M

(2M)n

M
= (2M)n.

The lower bound is trivial since each summand xi(2M)i−1 is greater than or equal to 1.

Property III is straightforward from the definition of P , for if x, y ∈ Zn and a, b ∈ Z, we have

P (ax + by) =
1

2M

n∑
i=1

(axi + byi)(2M)i

= a

(
1

2M

n∑
i=1

xi(2M)i

)
+ b

(
1

2M

n∑
i=1

yi(2M)i

)
= aP (x) + bP (y).

To see that Properties IV and V hold, we make use of the following lemma.

Lemma 1.1. Let x ∈ (−2M, 2M)n. Then P (x) = 0 if and only if x = 0.

Proof. If x = 0, then clearly P (x) = 0 by the definition of P . Now suppose by way of contradiction
that P (x) = 0 but x 6= 0. In this case, there is a least coordinate j such that xj 6= 0. Then we have

P (x) =
1

2M

n∑
i=1

xi(2M)i =
1

2M

n∑
i=j

xi(2M)i = 0,

and this implies that

xj =
n∑

i=j+1

xi(2M)i−j = 2M

n−(j+1)∑
i=0

xi+(j+1)(2M)i = 2M · k,

where k is an integer. But we are assuming that 0 < |xj | < 2M , and this implies that 0 < k < 1,
which is ridiculous. Thus our original assumption must have been false, and we must conclude that
x = 0.

Now to see that Property IV holds, suppose that P (x) = P (y) for x, y ∈ [1,M ]n. Then we have
P (x) − P (y) = P (x − y) = 0, and since x − y ∈ (−M,M)n ⊆ (−2M, 2M)n, this implies by the
lemma that x− y = 0, or x = y. Thus P is one-to-one.

Finally, to see that Property V holds, suppose that P (z)−P (y) = P (y)−P (x) for x, yz ∈ [1,M ]n.
Then we have

P (z)− 2P (y) + P (x) = P (z − 2y + x) = 0,

and we notice that z− 2y + x ∈ (−2M, 2M)n. So again by the lemma, we find that z− 2y + x = 0,
or z − y = y − x, as we wished to show.

Now take n =
⌈√

logN
⌉

and M = bN1/n/2c, and define A := P (Sn(M)). Then A ⊆ [1, (2M)n] ⊆
[1, N ] because P is integer valued into the domain [1, (2M)n], and |A| = |Sn(M)| because P is
one-to-one. Finally, we notice that A contains no arithmetic progressions of length 3, because by
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Property V, any non-trivial 3-term arithmetic progression in A corresponds to such a progression
in S, which is impossible because a line can intersect with a Euclidean sphere in at most 2 points.

To see that A is large enough, we calculate (assuming N exceeds some trivial lower bounds):

|A|
N

=
|S|
N
≥ Mn−2

nN
=

⌊
N1/n/2

⌋n−2
nN

≥
(
N1/n/e

)n−2
nN

= e2−n ·N−2/n · 1

n

= e(2−d
√
logNe) ·N(−2/d√logNe) · 1⌈√

logN
⌉

≥ e(2−(
√
logN−1)) ·N(−2/

√
logN) · 1√

logN + 1

≥ e(1−
√
logN) · e(−2 logN/

√
logN) · e−1−

√
logN = e−4

√
logN

Thus A satisfies the bounds required by the theorem.
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