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Randomness is a notion which everyone is familiar with in a practical, day-to-day manner—we
learn how to identify it and cope with it as a matter of course, just through the need to exist in a
world full of uncertainty and unpredictability. It’s not something that most people think too hard
about—we just know it when we see it.

However, when we try to rigorously define what it means for something to be “random”, we find
that it is actually rather difficult to pin down. What properties should hold in a random system?
What structure would one expect to find? What structure would one not expect to find? What
should you be able to predict about such a system? It turns out that these questions are not easy
to answer definitively—the inquisitive among us have come up with a surprising number of ways
to define randomness, each with its own advantages and disadvantages, strengths and limitations.

In the following discussion, we will consider one such notion of randomness, that of “Fourier Pseudo-
randomness”, which provides a measure of randomness for subsets of Zy. We will

e Define and prove the existence (in fact abundance) of Fourier Pseudorandom sets;
e Explore some of the nice properties of this type of randomness; and

e Discuss how Fourier Pseudorandomness is limited as a definition of randomness.

We will begin by recalling some tools and vocabulary from probability theory which will be useful
in the technical details to follow.

1 Tools from Probability Theory

The notation and proofs of this section are drawn to some extent from Terence Tao and Van H.
Vu’s book Additive Combinatorics, sections 1.1 to 1.3 [1].

We assume some basic familiarity with the definitions and properties of probability theoretic notions
such as probability spaces, events and random variables, independence and joint independence, and
expectation and variance.

For an event E, we let I(F) denote the indicator function of E, and for a set U C Zy, we let
U(zx) denote the indicator function of the event (z € U). The probability of an event E will be
denoted by Pr(E), and the expectation and variance of a random variable X will be denoted by
E(X) and Var(X) respectively. We recall without proof some basic identities related to expectation
and variance which will be particularly useful.



Proposition 1. Let X, X;, i =1,...,n be random variables, let ¢;, 1 = 1,...,n be constants, and
let E,E;, 1 =1,...n be events. Then

e Pr(E4U---UE,) <Pr(E))+---+Pr(E,)

e E(I(E)) = Pr(E), and Var(I(E)) = Pr(E) — Pr(E)?

E(c1 X1+ +enXy) = ak(Xy) + - + cnB(Xp)

Var(X) i= ]E<|X _ E(X)F) - E(lXIQ) — |E(X)[?

If the X; are pairwise independent, then
Var(X; +--- + X,,) = Var(Xy) + - - - + Var(X,,).

The following inequality, called Markov’s inequality, is quite important as a basic bound which
controls the probability that a non-negative real-valued random variable is large, in terms of its
expected value.

Theorem 2 (Markov’s Inequality). Let X be a non-negative random variable. Then for any positive

real A > 0, we have
E
Pr(X > \) < (A ). (1)
Proof. For all a in the sample space, the trivial inequality X (a) > A - I(X > X)(a) holds. Taking
the expectation of both sides and applying linearity of expectation yields the result. O

Markov’s inequality is particularly valuable because it can be applied easily in rather diverse
situations—it does not restrict the random variable X, and it only requires computation of the
expectation, which is often a more manageable feat than higher moments. However, its usefulness
is also limited by the fact that it fails to provide any bound on the probability that a random
variable is small. A more useful inequality in this regard is Chebyshev’s inequality, which bounds
the probability that a random variable is far from its expected value, in terms of its variance.

Theorem 3 (Chebyshev’s Inequality). Let X be a random variable. Then for any real A > 0, we
have

1
Pr(|X —E(X)| > Xo) < VL (2)
where o := Var(X)1/2.

Proof. In the case that Var(X) = 0, we have that X = E(X) with full probability, so the in-
equality holds trivially. If Var(X) > 0, we may apply Markov’s inequality to the random variable
|X — E(X)[? to find

E(1X ~E(OP)

Pr(|X B 2 02 Var(X) ) < —— e = 3

and the result follows directly. O



So Chebyshev’s inequality gives an improvement over Markov’s in terms of lower-end behavior and
in terms of decay with respect to the choice of constant A\. However, in certain more restricted cases,
it is possible to do better than inverse-square decay. The following inequality, called Chernoff’s
inequality, in fact offers exponential decay as lambda varies, at the cost of a strong restriction on
the form of the random variable.

Theorem 4 (Chernoft’s Inequality). Let X := X1+---+X,, be a random variable, where X1, ..., X,
are simple, real-valued random variables which are jointly independent and have | X; — E(X;)| < 1
for all i. Then for any real X > 0, we have

Pr(|X —E(X)| > Ao) < 2max (67}2/4,67)‘0/2) ’ 3
where o 1= Var(X)1/2

In order to approach this result, we need a lemma which bounds the so-called “exponential moment”
E(etxi) of the variables X;. To this end we have

Lemma 4.1. Let X be a simple real-valued random variable with |X| < 1 and E(X) = 0. Then
for any —1 <t <1 we have E(e'*) < exp(t? Var(X)).

Proof. Since [tX| < 1, we may compare the exponential !X to its Taylor series expansion by

o k 2y 2 2y2 k—2
i (tX) 2X? 22X 3 (tX) ) s
- — 14X <14 tX 1 £2X2
¢ kzo i T Ty =TT

Taking the expectation of both sides and using linearity of expectation and the fact that E(X) = 0,
we find
E(e'X) <1+ #2E(X?) =1+ t2E(yX - IE(X)|2> < exp(t2 Var(X)).

O
Using this bound on the exponential moment, we may proceed with a proof of Chernoff’s inequality.

Proof of Chernoff’s inequality. Notice that X — E(X) is invariant under addition of a constant to
the X;. Therefore, assume without loss of generality that the variables X; have E(X;) = 0 by
working with the functions X; := X; — E(X;). In particular this implies that E(X) = 0.

Notice next that Pr(|X| > Ao) = Pr(X > Ao) +Pr(X < —\o). In applying a symmetric argument
for —X to the latter case, it thus suffices to show that

Pr(X > Mo) < e tA/2
where ¢t := min(A/20,1). We can apply Markov’s inequality to obtain

Pr(X > \o) = Pr(etX > et)\cr> < e—t)\crE(etXl » 'etXn) .

Since the variables X; are jointly independent, so are the e'*i, and we may split the latter expec-
tation. Using this and applying the lemma, we find that
E(etXl . 'etX") = E(etXl) . -E(etX”) < exp(t? Var(Xy)) - - - exp(t? Var(X,,)).

Again by joint independence of the X;, we know that Var(X;) + --- + Var(X,,) = Var(X) = o2
Putting together the inequalities and using the fact that ¢t < \/20, we see that

2,2 2
PI‘(X > )\O’) < e—t)\aet 7 < e—t)\aeta A 20 _ e—t/\U/Q’

and this completes the proof. O



2 The Fourier Transform on Zy

We now proceed to define the main player in our discussion of Fourier pseudorandomness—the
Fourier transform on Zy.

Definition 5. Let f : Zy — C. The Fourier transform f: Zn — C of f is defined by

FO =5 X faex (-ac- 5. e

TELN

The Fourier transform has a number of interesting properties which are useful in applications. We
note some of them here as a proposition, but leave the simple proofs as an exercise for the reader.

Proposition 6. Let f,g: Zny — C. Then

Fourier inversion formula:

f@) = 3 Feexp <~’652§) (5)

E€Ln

Parseval’s identity:

+ 3 i@ = Y F©7e (6)

TELN £ELN

Plancherel’s identity:

1 ~
= 3 @ =Y |fe

TELN E€ELN

Uniform boundedness:

max | f6)] < & 3 17(@) ®

A further definition which is useful in dealing with the Fourier transform is that of the convolution.

Definition 7. Let f,g: Z, — C. The convolution f xg:Zx — C of f with g is defined by

frg(z) = % > fwglx —y). 9)

YyeELN

This function serves as an average of sorts between the functions f and g. Convolution has some
nice properties which are summarized in the following proposition.

Proposition 8. Let f,g,h: Zy — C. Then

o Convolution is commutative: f+g=g=* f
e Convolution is associative: (f xg)xh = f =« (g=*h)

e Fourier transformation distributes over convolution: f* g = f g



Again we omit the proofs of these facts, but it is worthwhile for the interested reader to work out
these identities in detail for a full understanding of the mechanisms at work.

We conclude the section by connecting the notions of Fourier transformation and convolution with
the language of probability theory.

Proposition 9. Let fi,...,fn : Zny — C, where we consider f; as a random wvariable on the
probability space Zy with a uniform probability distribution. Then

e FExpectation identity:
n
E(fy# - fa) = [] £(0)
k=1

e Variance identity:

Var(fy -+ x fp) :Z ﬁ‘ ‘
€40 k=1

Proof. Because of the distributive property of the Fourier transform over convolutions, it is sufficient
to prove each property for a single function f : Zy — C. For the expectation identity we have

Ef=Y f0=x Y fa exp( 2]7\?) 7).

TELN TELN

For the variance identity we see that

Var(f) =E(|f ~ E(/)?) = Z\f \

xEZN
’(f fo ><5>2= > [f@ - Fo)-1e=o| =X |fe
{ELN EELN £#£0

3 Fourier Pseudorandomness

And finally we can introduce the topic of interest. To motivate the definition of Fourier pseudo-
randomness, take another look at the Fourier inversion formula:

21
f ) exp ( )
g ¥

The exponential part of the sum may be considered more transparently as a periodic trigonometric
function of z. Indeed, in light of Euler’s formula that ¢ = cos(6) + isin(#), the Fourier inversion

formula can be rewritten as
x§
E f c0s< >+z§ f sm< ~N )

§E€ELN EELN

This illustrates that the Fourier coefficients f(f) can be viewed as weights of a decomposition of
f into periodic parts of different periods. Notice in particular that the zero-th Fourier coefficient
f(O) plays a special role, in that the periodic part corresponding to that coefficient is constant
throughout the sum. With these thoughts in mind, we make a definition.



Definition 10. For f : Zy — C, we define the Fourier bias ||f||u of f by

£l = max | 7(6)]. (10)

A subset A C Zy is called e-uniform, or e-pseudorandom if || Al|lw < €. The property of having low
Fourier bias is called linear uniformity.

In terms of our motivation, this definition in some sense states that no periodic part of the Fourier
decomposition dominates. We will explore a few of the formal properties of linearly uniform sets
later.

For now, we note some basic properties of Fourier bias on subsets of Zy.

Proposition 11. Let A C Zy with |A| = dN. Then

o Symmetry properties:

[l = 1Zx \ Alla = |=Alla = A + 2]

e Triangle inequality [1, Fx. 4.3.3]: If B C Zy with AN B =), then

Al = [[Bllul < 1AV Bllu < [[Allu + [ Bl

e Uniform boundedness: R
JA]l, < min (5,1 - 8) < A(0)

o Variance bound:
(1 —19)

All2 >
| All; > N1

Proof. The first three properties we leave as an exercise to the reader. For the last, notice that we
have

E(A):% ZA(:r)z'ff':&

TELN

Using this, the variance identity, and the definition of Fourier bias, we see
5(1 - 6) = E(A) — E(A)* = E(|4]) — [E(4)[” = Var(A)

~ 2_ 9
< (N = Dmax |A©)] = (¥ - D]lA[3,

and this proves the inequality. O



4 Properties of Pseudorandom Sets

It turns out that Fourier pseudorandom sets have a number of nice properties that one might
expect from “random” sets. The first such property which we discuss concerns the density of
intersections of a set with translates of another set. Indeed, if one or both of the sets in question
are pseudorandom, then this density does not differ too much from the expected density, on average:

Theorem 12. Let A, B C Zy with |A| = 4N and |B| = dgpN. Then

AN(B+x
E( 40(B + o) ) < \VIALIBll - V6435 < V/TAT B,

—040pB

and in particular,

|[AN (B + )|

N —040pB

#:{JIEIZN

> YIALIBT. ) < N - YTALIET
Proof. We use without proof the simple identities

A B -
|AnB| Z A VB(¢
AN

and

We have

|AN (B + x)|

N —040B

- S A B ex (wé 2”) ~ote) S AOB e (26 57 )

B(| G aim) = § 2 o) D A@BE e (26 5
TELN £#£0
—S ARy X owew (~a-9)- 5 ) = T AOB@a-9
€40 w€ly €40
1/4 1/4 1/2
~ ~ ~ 4 ~ 4
<> |a@|[Bo|r-or< | S|l (X Bel | (X eer] .
€40 €40 €40 €20

where the last inequality can be seen as a double application of the Cauchy-Schwarz inequality.
We can estimate the three terms of this product individually to obtain the desired bound. Using
Plancherel’s identity, we have

Slae| <iai- S A =148 5 3 14@FE = 1413 64,

E#£0 EELN TELN



and an equivalent bound holds for the second term as well. Even more simply for the third term,

SREOF< Y BePF =1 Y ek =1

§#0 §€ELN ¢€Zn
and the bound follows.
To see the second bound, simply apply Markov’s inequality (1) with A = HA||111/ 4||BH111/ *
O

The second property of pseudorandom sets which we consider concerns the propensity of a pseudo-
random set to contain roots of a linear polynomial in several variables. If P(z1,...,x,) is a linear
polynomial in n variables, then one might expect to find \A|n_1 6 roots of P in a “random” set A
of density 4. To see this, notice that given certain restrictions on N, we may find for each choice
of x1,...,2p—1 from A a unique z,, such that (z1,...,2,) is a root of P. Thus in a random set,
we could expect a proportion of approximately ¢ of the \A|n71 values of z,, to lie within A, giving
\A|"_1 6 roots. Indeed, we will see that a pseudorandom set contains approximately the expected
number of roots of a given polynomial.

Theorem 13. Let n > 2, and let P(x1,...,2zy) := c121 + -+ - + ey be a fized linear polynomial
in n variables. For A C Zy with |A| = dN, denote the number of solutions to P(x) = 0 contained
in A by

Np(A) = #{(x1,...,2,) € A" : P(x1,...,2,) = 0}.
Then for N with greatest common divisor (cica---cp, N) equal to 1,

Np(4)

Nn—l —d"

< JlAI2 - 6.

Proof. Recall that an orthogonality condition exists for sums over roots of unity. Indeed, for x € Z,
1 2mi
N Z exp (msz;z) =I(x=0 mod N).
E€ELN

Making use of this, we have

Np(A)y= > I(P(z1,...,2,) =0 mod N)

T1,...,EnEA
n .
1 271
= Z H A(xy) N Z exp <—(C1:U1 + o epap)E N))
T1,..,2n€LN k=1 EELN

=Nt S Ty 3 Ao (-aae ) =37 3 T Awe)
EEZ

EE€ELN k=1 TLELN

and further,

ot = = | 2 T Ao - = [ [T Atas)
E€Zy k=1 £7#0 k=1
. 1/n
<A@ < I [ X [aee"
€40 k=1 k=1 \ £#0




This last inequality is an application of the generalized Hoélder’s inequality. Notice that since
(cic2 -+ cpy N) =1, we have that (cx, N) =1 for each k = 1,..., N. In particular, this means that
as £ traverses a complete set of non-zero congruence classes, ci & does as well. Thus we have

1/n 1/n
Ml s < TT (S JAwo") =TI (X |Ae[
k=1 \ €40 k=1 \ €0
. 1/n " 1/n
~ 2 —~ 2
<TI(rai2-Xla@f ) <TII {1423 Ao
k=1 €40 k=1 €€y
e 1 N e AN
=TI (141 % 3 1A@) H(IIAII” ) =g
k=1 TELN k=1

5 Existence of Pseudorandom Sets

Now that we have proven fairly non-trivial properties about linearly uniform sets of numbers, it is
natural to ask whether such sets actually exist. Certainly it is not unthinkable that such sets are a
rarity or an impossibility, and that the preceding exposition is, while valid, vacuous. Fortunately, it
is possible to give explicit constructions of pseudorandom sets, and in fact, one can formally show
that pseudorandom sets are in a sense the norm rather than the exception.

First we note some sets which are trivially pseudorandom. Clearly if A = (),Zy then ||Al|, = 0,
and it fairly easy to show that these choices of A are the only ones with this property. Further, we
may use the uniform boundedness property of Proposition 11 to see that any set with density near
0 or 1 necessarily has small linear bias.

So a more interesting question to consider is whether we can find pseudorandom sets of non-trivial
density. We first discuss a construction which produces a family of pseudorandom sets of density
approximately 1/2 which has members with arbitrarily small Fourier bias. The construction of
these sets is straightforward, but the proof that they are pseudorandom relies on some facts from
elementary number theory, most of which are proven in a first course on the subject.

Proposition 14. Let p be an odd prime, and let A, C Z, be the set of all (non-zero) quadratic
residues of Zy, defined by
A, = { tx € Z*}

Then A, has density (p —1)/2p, and

1A = ‘@;1, =1 (mod 4)
P Vg;rl, =3 (mod 4)

In particular, lim ||A,|l, = 0.
pP—0o0

Proof. There are as many quadratic residues as non-residues in Zy, so A, has exactly |Z ‘ /2 =
(p — 1)/2 elements, which gives a density of (p —1)/2p in Z,.



Now notice that we can formulate the indicator function of A, in a convenient manner in terms of
the Legendre symbol, mainly,
X
)+ 1w=0)

Ap(z) = 9 - 9 .

We calculate for non-zero &:

-2 w25 () )on (4 )

TE€Lp TE€Lp

1 27ri 1 —¢! 1 27i 1
:2z<$>exp(_xg.“>_2=< ¢ )-22<x>exp<x'm>—2.

P iz, \P P 1% P P iz, \P P 1%

The sum of Legendre symbols is what is known as a quadratic Gauss sum, and takes on values /p
for p=1 (mod 4) and i,/p for p =3 (mod 4). So in the case of p = 1 we have

— -1

A
p(f) 2p )
and when p = 3,
N
Ay(l) = ——
p(&) 2p )
where the signs depend on whether —¢™1 is a quadratic residue. The respective values of ||Ap||u
follow by calculating the magnitudes of these quantities. O

It is worth noting that in the case of p = 3 (mod 4), A4, is actually as uniform as is possible—the
variance bound from Proposition 11 gives us that

p=1  p+l
”A||2>5(1_5>: 2p 2p :p+1
pliu = -1 p—1 4p? 7

and indeed we have shown that for p = 3, the Fourier bias achieves this value.

So we see that we can construct uniform sets with density around 1/2. Next we describe a similar
construction based on lecture notes by Stanford professor K. Soundararajan which gives uniform
sets of arbitrary non-trivial density.

Proposition 15 (Soundararajan [2]). Fiz 0 < 0 < 1 a desired density. Let p be prime with p =3
(mod 4), and let A, C 7Z, be defined by

Ay ={x€Zy,:2* =y (mod p) with |y| < p/2}.

Then A, has density (2|dp/2] +1)/p, and

logp>
Ally=0 .
141 5(ﬁ

Proof. Since p = 3 (mod 4), —1 is not a quadratic residue, and we know that z is a quadratic
residue if and only if —x is not. Thus if there are k quadratic residues in [1, [dp/2]], there are
exactly [0p/2] — k residues in [—|0p/2],—1], and this implies that |A,|/p = (2|dp/2| + 1)/p
because every non-zero quadratic residue has exactly two square-roots in Zj,.

10



Now to prove the estimate on the uniformity, we calculate for £ # 0,

5O =3 3 Ayfa)ew (—xg - 2;)

TEZLp

S 6,2 Tl D) e ()

z€Zp |b|<ép/2T€Ly
1 27 27
== Z Z exp ((r:c2 —&x) - m) Z exp (br . m)
p r€ly \TE€ZLp p [b|<dp/2 p

The sum over x is called a generalized Gauss sum and has modulus bounded by /p. We further
bound the modulus of the sum over b by min(ép+1,1/(2||7/p||)), where ||r/p|| denotes the distance
from r/p to the nearest integer. The bound of op+ 1 follows from simple application of the triangle
inequality. To get the second bound, we first need a short lemma.

Lemma 16. For 0 € [—m, 7],

2
1- 10)] > —
1= exp (i0)] = =

-0, 6¢€[-m, .

Proof. By symmetry, it is sufficient to show that this holds for § € [0, 7]. We calculate an equivalent
statement by noting

11 —exp (i0)] = /(1 — cos(0))2 +sin(0)2 = V2 - /1 — cos(h),

and seeing that
2 2
1- i) ==-0 1 —cos(f) — = -6 =0.
|1 — exp (i6)] —0 = cos(#) = 0

The inequality we wish to show is actually equality at the endpoints § = 0,7, and it also holds at
0 = w/2. Thus it suffices to show that the endpoints are the only points of equality in the domain
[0, 7]. This follows if we can show that 1 — cos(#) — 20% /72 has zero derivative at at most a single
point in (0, 7). Indeed, we have

d0<1—COS(9)—ﬂ_29>—Sln(G)—ﬂ_2 0 0
. 4
s Sln(ﬂ)zﬁ-e

sin is concave in the domain [0, 7] and strictly concave in (0,7), and so any linear function can
intersect it at at most two points in [0,7]. In particular, 40/72 intersects sin(f) at § = 0, so it
cannot have more than a single further intersection in (0, 7). The claim follows. O

To prove the second bound, we make use of the geometric sum formula and the inequality above

to find
271
> exp (-2 - e (o2 - e (r-2
p p

|b|<dp/2 b—0 1 — exp (r . %)
2 9 9 1

= ~7 = < _ '

1 —exp (v 220)] 1= e /el 2mi)] = 2/ -l /ol 20/

>2L5p/2j+2

11



So we have

Te|=| > o <<m2—5m>-2”) Y e (—sz)

P ez, \ecz Ib|<op/2
(p—1)/2
VP . < 1 > f . p
< = min(dp+1, —— | =5 | dp+2- mm(ép—i—l,—)
p? EZ:P 2r/pll ) p? ; 2r

In particular, we notice that dp +1 < p/2r only when r < |p/2(dp+1)] < k:=|1/26], and so we
have

(p—-1)/2

Dol < (@rvmea X L) = (pog (P51 ) +0ut)
p r=1 " p 2
log(p —1) ( 1 > <logp>
=————"4+0s5|—|=0 ,
v\ e
and this proves the estimate for ||Ap||,. O

This proposition shows that the example of quadratic residues is not just an isolated instance of
pseudorandomness—in fact we can generate pseudorandom sets of arbitrary density. Indeed, as a
rule of thumb we find that sets whose primary structure is non-linear tend to be linearly uniform.

We now show that the linear structure indicated by high Fourier bias is probabilistically uncommon.
To complete the proof, we make use of a Corollary of Chernoff’s inequality (Theorem 4) which
extends the use of the inequality to complex-valued random variables.

Corollary 17 (Chernoft’s Inequality II). Let X := X; 4+ --- + X, be a random variable, where
X1,..., X, are simple, complex-valued random wvariables which are jointly independent and have
|X; — E(X;)| <1 for alli. If we denote by o := Var(X)1/2 the standard deviation of X, then for
any real A > 0, we have

Pr(|X —E(X)| > Ao) < 4max (e—>\2/87 e—)\cr/2\/§> .

The proof, which uses the real-valued version of Chernoff’s inequality by splitting the random
variable into real and imaginary parts, we leave as an exercise. Using this variant, we now show
that on average, a random subset of Zy is relatively pseudorandom:

Proposition 18. Let 0 < 7 <1, and let A be a random subset of Zn defined by letting the events
a € A be independent with probability 7. Then for any A > 0 we have

Pr(||Ally > Ao) < 4(N — 1) max (e_AQ/S,e_Ag/m) |
where 0 := (1 —T)/N.
This result is based on Lemma 4.16 from Tao and Vu’s book Additive Combinatorics [1].

Proof. We apply Corrolary 17 to the complex-valued random variable A\(f) for fixed non-zero &.
Notice that because the A(z) are jointly independent random variables (with range {0,1}), A(£) is
a random variable of the proper form to apply Chernoff’s inequality II:

2ms

A=y X Awew (-ae 5 = 3 2T Ay = Y A6

TELN TELN TELN
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Clearly if the A(z) are jointly independent, then for arbitrary constants ¢, the variables ¢, A(z) are
also jointly independent. Further, since the coefficients ¢, := exp(—x¢ - 27”) /N have modulus at
most 1, the range of A,(§) has diameter bounded by 1 for each x, and hence |A,(§) — E(A4,())| < 1.
Thus E(g) = A1(§) + -+ An(&) satisfies the conditions necessary to apply Chernoft’s inequality.
We calculate

H16)- 5 AL S e )

AQZN IEGZN
1 2mi
=5 D e <—x§']7\?) S A@@)ri — N
1 omi
= > exp (;gg . ;’) o S Bl - p--s
z€ly BCZy\{z}
T 271
- N Z eXP(—:cé-) =0,
N CEGZN N

2

Var(]{(g)) :E<‘E(§)‘2> = Y AMa-nNA= Z Az exp< € - 27”)

AQZN Z'GZN
a1 27 2mi
_ Z T\Al(l _T)N Wm Z A(z) eXp( € - ) Z A(y) exp <y§ )
ACZN T€LN YELN
1 27 _
= Z exp<( — )¢ > Z A(z)A(y) A (1 — 7)N-1AL
2YELN ACZn

For z =y, we have

> Al@)A@y)r AL — )N

ACZN

= 7. Z rIBl(1 — )(N=D=IBl — 7

BCZn\{z}

and for x # y we have

Z Az)A(y)74 (1 — 7)N-1Al

ACZN

=72 Z rIBl(1 — 71)(N=2=IBl = 2,

BCZn\{z,y}

13



So we find

Var(g(§)> = % T Y exp <(y_$)§ : 2Nm> 2 3 exp <(y 2 2Nm>
T=yELN vkyeln
:% NT"‘TQZ Z exp((y—x)g.i\[m>
k#0 y—z=k
:% NT+NT2ZeXp<(y—Q;)€.2]7\7) :]\1[2(NT—NT2):T(1]V_T)’

k0

and by Chernoff’s inequality II we have
Pr(‘fl(f)‘ > )\a) < 4 max (e*)‘z/S, e*)“’/%ﬁ)
for any A > 0. In particular, if we apply this inequality over all non-zero &, we find

Pr(|Alls > Ao) = Pr<

g(f)‘ > Ao for some £ # 0)

< ZPr(‘A\(f)) > )\O’) < 4(N — 1) max <6_/\2/8,6_>\0/2\/§> .
£#0

6 Limitations of Linear Uniformity

Based on the properties we’ve explored, it is apparent that the notion of Fourier pseudorandomness
mirrors the intuitive notion of “randomness” in a variety of ways. However, it is important to point
out that Fourier pseudorandomness fails to capture the idea of randomness when looking at local
structures which are not in some sense linear. As a demonstration of this, we return to the example
of Soundararajan from Proposition 15.

Proposition 19 (Soundararajan [2]). Fiz 0 < 6 < 1 and let A, be defined as in Proposition 15.
Then for large p, there exist at least §3p?/(2 - 73) 4-term arithmetic progressions in Ap.

Proof. Define B, as A, but with density 6/7. As per Proposition 15, the Fourier bias of B, goes to
0 as logp/,/p, and so by Theorem 13, the number of 3-term arithmetic progressions (the number of
roots Np of the polynomial P(x1,x9,x3) = x1 — 2z + x3) approaches the expected number, mainly

Np (Bp)

SEE = O/ < Al < G

—> |Np(By) — 6°p* /7| < C5 - p**logp.

log p

VP

In particular, for large enough p, the difference Cj - p*/2logp is small relative to §%p? /73, and
this implies that B, has at least §3p?/(2 - 7) 3-term arithmetic progressions for all p which are
sufficiently large.

Conveniently enough, it turns out that for each 3-term arithmetic progression a, a 4 d, a + 2d which
lies in B, C A, the fourth term a + 3d also lies in A,. To see this, note the identity

a? —3(a+ d)? + 3(a+ 2d)? — (a + 3d)* = 0.
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Since a,a + d and a + 2d are assumed to be in B, their squares are congruent mod p to numbers
with magnitude at most §p/14. Thus in particular, (a + 3d)? is congruent mod p to some b with
|b| < 7(6p/14) = dp/2, and hence is contained in A,.

Thus each 3-term arithmetic progress in B, represents a distinct 4-term arithmetic progression in
Ap, and we see that there are at least §3p? /(2 - 73) such progressions for large p. O

For a random subset in Zj,, one would expect to find about §*p? arithmetic progressions of length
4, so this result implies that for small §, we find significantly more 4-term arithmetic progressions
in A, than expected. So we see that Fourier pseudorandomness does not control the quantity of 4-
term arithmetic progressions in a set in the same way that it does the quantity of 3-term arithmetic
progressions or roots of arbitrary linear polynomials.

We conclude by noting that there exists an alternate formulation of pseudorandomness called Gow-
ers uniformity which avoids the limitations noted here. This notion is similar in spirit to Fourier
pseudorandomness, making use of the Gowers uniformity norms in place of Fourier bias, and it has
the advantage of controlling the density of structures defined by higher degree polynomials. How-
ever, balancing these advantages is the fact that Gowers uniformity is significantly more technical
and difficult to work with than Fourier pseudorandomness, so both notions have a useful place in
the general theory. A notable application of Gowers uniformity is in a proof of Szemerédi’s theorem
on the existence of arbitrarily long arithmetic progressions in a subset of the integers with positive
density.
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